概要

高安研究室とは

金融システム作成中

ディーラーモデル

金融システム

暴騰・暴落

金融システム 作成中

板情報

金融システム

PUCKとは

ネットワーク 作成中

企業間取引ネットワーク

Web上の口コミ

ソーシャルメディア

購買行動作成中

POSシステム

GPS人流データ

COVID-19感染予測

COVID-19感染予測

最新データでの関東(茨城、栃木、群馬、埼玉、千葉、東京、神奈川、山梨)におけるCOVID-19の感染予測です。 7日移動平均を推定していることに注意してください。休日が多い週についてはズレが大きくなる可能性があります。 塗りつぶされた部分は ±1σ 誤差範囲を表し、そこに入る可能性が68%程度と見積もられるという意味です。

手法

現在、COVID-19について、日常の各行動パターンの感染率をマクロなGPSデータから推定した論文(https://arxiv.org/abs/2203.09531)を投稿中です。 研究室メンバーの尾崎、志田、高安秀樹、高安美佐子による研究です。 この研究ではAI的アプローチは用いず、要素を全てモデリングすることにより実効再生産数をGPSデータから再現することに成功しました。パラメタ数も低く抑えられています。 また、行動によって感染率が28倍以上異なることを示し、ワクチンの効果や変異株の影響も導入し説明できています。また地域やその他の属性ごとに、実効再生産数への寄与の推定が可能です。
さらに、新しい要素として、追加でワクチン効果の減衰、集団免疫の影響を導入済です。詳細は、今後の論文に記載する予定です。

詳細

under construction

連絡先

尾崎順一 (ozaki.j.ac_at_m.titech.ac.jp ※_at_ を @ と変換してください)