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Abstract This paper describes the application of percolation theory to a Japanese
business relation network composed of approximately 3,000,000 links. In this net-
work, we examined the process in which links are randomly removed. At the perco-
lation transition point, we calculate the survival rate for each node as an indicator of
its global network connectivity. The basic properties of each node are determined in
connection with the values characterising these complex networks, such as the link
number and job category. We confirm that this index has strong correlation with
degree and shell number, also has significant correlation with sales and number of
employee. Finally, we define the network robustness for each prefecture in Japan by
using this new indicator.
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1 Introduction

Percolation theory has been studied in the fields of physics and mathematics. Es-
pecially, many interesting properties have been revealed about the percolation tran-
sition point at which macroscopic connectivity disappears when removing its ele-
ments [1]. Because of the high versatility of this theory, it has been applied to a wide
range of real world problems, such as electrical conduction [2] and Internet traffic
congestion [3].

Since the BA model was proposed [4], percolation theory has been applied to
complex networks with an inhomogeneous structure in connection with the con-
cept of small-world [5]. Studying the percolation process in such complex networks
plays an important role from the viewpoint of the fragility of a given system. It is
well known that scale-free networks lose connectivity at low density if nodes are re-
moved randomly and at high density if nodes are removed in descending order of the
degree [6]. Because these studies can be viewed as a kind of stress test, percolation
theory is also important for application study.

In the next section, we explain a dataset composed of about 600,000 Japanese
firms and describe its basic properties as a complex network. We present the basic
results of our percolation simulation in Section 3. The statistical properties of the
survival rate and the theoretical analysis are provided in Section 4. In Section 5, we
discuss the network robustness of the prefecture in Japan. Finally, we conclude this
study and mention our plans for future work in Section 6.

2 Business Relation Network

The dataset we used in this study was provided by TEIKOKU DATABANK, Ltd.,
a Japanese credit research company. It included information about the direction of
money flow, sales and employees of each firm in operation in 2011. From the point
of view of a network study, the dataset provided a complex network consisting of
612,133 nodes and 3,841,496 links. As we were interested in the percolation prop-
erties of this network, we ignored the direction of the links and severed so-called
dangling bonds, i.e. the bonds that could be removed from the network by the re-
moval of a single link. We then extracted the largest strongly connected component
(LSCC) from the raw network [7], and ignored the direction of each of the links for
simplicity. As a result of this process, our network was composed of 327,721 nodes
and 2,960,370 links. This operation enabled us to reduce the amount of numerical
calculation in the following analysis.

Next, we present the basic properties of this network. The link number, namely,
degreek, is distributed across a wide range, and this distribution is approximated by
a power law for a large degree.

F(≥ k) ∝ k−α (1)
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Fig. 1 Largest cluster sizeR normalised by all links in the range off between 0.95 and 1.00. The
arrow indicates the percolation transition point. The average was taken over 100 trials.

The cumulative exponentα is roughly estimated to be 1.5. Hence, the business
relation network is a typical scale-free network [8]. In addition, it also has the small-
world property [9].

In this network, we introduce k-shell decomposition, which is a general method
intended to reveal the layer structure in a complex network [10]. Application of this
method enabled this network to be decomposed into 25 layers, which are also called
shells. A shell number is defined for each node, and the number of nodes with the
shell number 7 is most numerous [11].

3 Percolation Simulation

A detailed observation of the changes in the network topology became possible
when links were randomly removed from the network one by one especially around
the percolation transition point. In this case, we did not apply node removal as this
could be viewed as a kind of correlated link removal. We calculated the largest clus-
ter sizeR as an order parameter, which was defined as the ratio of the number of
links in the cluster to all the initial links. Here, the control parameterf is the ratio
of the number of removed links to all links. As shown in Fig. 1, the order parameter
R is sufficiently small for f larger thanfc, which is referred to as the percolation
transition point. We estimated the value offc as 0.994. Its value is approximately
1, but not exactly 1, and this result is consistent with the findings of previous re-
search in which percolation simulation was applied to a complex network [12]. The
properties around this point are discussed in detail from the viewpoint of statistical
physics including the finite-size effect [11].
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Table 1 Spearman’s rank correlation coefficient between the survival rate and principal parameters
(degree, shell number, sales, and number of employees).

Spearman’s rank correlation coefficient

Degree 0.729
Shell Number 0.765
Sales 0.378
The number of employee 0.356

4 Survival Rate

4.1 Basic Properties of Survival Rate

In this section, we introduce the survival rate for each node and provide its basic
properties. At the transition point (fc = 0.994), the survival rate is defined as the
ratio of the number of trials, in which the node belongs to the largest cluster, to the
total number of trials. In this study, 100,000 trials were performed to estimate the
value of the survival rate for each node. This parameter is widely distributed, and
its large-scale behaviour approximates a power law [11]. It should be noted that this
index is able to characterise the global connectivity of each node in the network as
we explain in Section 4.3.

Next, we discuss the correlation between the survival rate and important param-
eters characterising firms, such as degree, shell number, sales and the number of
employees. Spearman’s rank correlation coefficient was chosen for this purpose,
because Pearson’s correlation coefficient is susceptible to outliers. As shown in Ta-
ble. 1, there is a positive correlation between the survival rate and all the parameters,
and this is especially strong for values characterising the network, such as the degree
and shell number.

The correlation between degreek and the survival ratePs was investigated in
more detail. The variation of the survival ratePs was clarified by plotting its dis-
tribution for degreek as shown in Fig. 2. We found that the survival ratePs varies
even in the same range of degreek. Therefore, the survival ratePs is not completely
determined by information relating to the local connectivity, such as degreek; the
degreek can explain this value roughly. This fact suggests that the survival ratePs is
determined by the critical cluster, which includes the information of the whole net-
work topology. In this sense, this robust index includes information about the global
connectivity, such as the shell number, as opposed to local connectivity such as the
link number.
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Fig. 2 Degreek vs the survival ratePs in a log-log scale. Minimum, 1st quartile, median, 3rd
quartile and maximum are plotted for log bin. In cases where the representative value was 0, we
replaced the observation limit,1.0×10−5.

4.2 Practical Meaning ofPs

It is important to note that the nodes with the same survival ratePs were confirmed
to have widely distributed link numbers as shown in Fig. 2. We subsequently inves-
tigated the features of the nodes with a high survival rate for small link numbers and
those with a low survival rate for large link numbers. First, we specified a range of
degreek from 1 to 10 as a set of small link numbers within a certain range of the
survival rate (5.0×10−4 ≤ Ps ≤ 5.0×10−3), which includes approximately 20,000
nodes. When we investigated the industry these nodes represent, it was revealed
that the nodes categorised as belonging to the construction industry captured 27%
of the share, whereas the share was 21% of the network in its initial state. This result
means that nodes belonging to the construction category have a higher survival rate
than nodes in other categories.

Next, we focused on nodes with a large number of links within the same range
of survival rate (5.0×10−4 ≤ Ps ≤ 5.0×10−3). These nodes are characterised by
a low survival rate and are fragile in spite of their many links. As an example, we
paid attention to the node with largek and relatively smallPs, (k,Ps) = (448,3.3×
10−3). As shown in Fig. 3, most of its linking nodes are located on the same island,
Hokkaido, and there are only 13 links (about 3%) connecting to firms outside this
island. There are not many links connecting to nodes located outside of this island.
This result suggests that this type of node bundles firms in a local region.
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Fig. 3 Nodes with small survival rate (red circles) and its linking nodes (orange dots) plotted for
Hokkaido Island in Japan.

4.3 Theoretical Estimation

A theoretical estimation of the survival rate was derived by using the degree and the
rates of linking nodes as follows. In the case of a node that only has one link we
have the following exact relation.

Ps,i = (1− fc)Ps, j (2)

where, the subscripti represents the focusing node, and the subscriptj represents
the its linking node.

We next extended this formulation to the general case for nodes with multiple
links. The probability of the focusing node being connected to the giant component,
Ps,i is approximated as follows.

Ps,i = 1−
k

∏
j=1

{1− (1− fc)Ps, j} (3)

On condition that the survival ratePs is sufficiently small, we can approximate Eq.
(3) by the following equation.

Ps,i ≃ (1− fc)Qs, j (4)

Here,Qs, j is defined as∑k
j=1Ps, j . This equation shows that the survival ratePs is

explained by the summation of the survival rates of linking nodes. In Fig. 4, we
confirm that this relation is in good agreement. This examination revealed that the
survival ratePs depends on the link numberk and the survival rates of the link-
ing nodes,Ps, j . This result shows that the valuePs,i is determined from the global
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Fig. 4 Summation of the survival rateQs of nearest-neighbour nodes vs the survival ratePs. The
average is plotted in each log-scaled bin. Error bars are estimated by standard deviation in log-log
scale. The line shows Eq. (4).

network topology, and that the mean field approach used in Eq. (3) works well in
deriving Eq. (4).

5 Network Robustness of Prefectures in Japan

By using the survival rate, we define network robustness of each prefecture as fol-
lows. We picked up the top 10,000 ranking nodes (practically consisted of 10,005
nodes counting the same ranking) by the order of survival rates, and counted the
number of nodes, and normalised this by the original number of nodes in the ex-
tracted network for each prefecture. As shown in Fig. 5, Tokyo, Osaka, and seven
other prefectures were judged to belong to the most robust class.

As mentioned in section 2 we extracted the LSCC from the raw network when
we made the percolation simulation. By this operation, the number of nodes was
reduced from 612,133 nodes to 327,721 nodes. In order to check this effect, we
re-calculated the network robustness normalized by the original number of nodes
in the raw network for each prefecture as shown in Fig. 6. Comparing with Fig. 5,
we confirm that changes by this modification are very small, and we find that the
eliminated nodes do not affect the results.
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Fig. 5 Network robustness for each prefecture in Japan. Here, the network robustness of each
prefecture is estimated by the number of top 10,005 robust nodes located in the prefecture divided
by the number of nodes of the initially extracted LSCC network in the prefecture. Colours show
the ranking of network robustness categorised into 5 classes,(1∼ 9),(10∼ 20),(21∼ 28),(29∼
38),(39∼ 47) from the deepest to the lightest.

6 Conclusion

This paper discussed the basic properties of survival rate of a business relation net-
work in Japan based on percolation theory. First, we presented the statistical proper-
ties of the survival rate by characterising each node as an index measuring the global
network connectivity. Values of survival rate are confirmed to be correlated to net-
work connectivity indices such as degrees or shell numbers. However, as shown in
Fig. 2, the values distribute widely for the nodes with the same degree number. It
is proved in section 4.3 that the survival rate of a node is determined by the sum
of survival rates of its neighbor nodes. As the survival rates of neighbors are de-
termined by the next neighbors, and so forth, this value reflects information about
wider area’s network connectivity.
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Fig. 6 Network robustness for each prefecture with modified normalization. Compared with Fig.5
normalization by the whole number of nodes in the original raw network is applied. Colours show
the ranking of network robustness categorised into 5 classes,(1∼ 9),(10∼ 20),(21∼ 28),(29∼
38),(39∼ 47) from the deepest to the lightest.

We discussed regional differences from the viewpoint of network robustness. The
proposed method enabled us to extract those prefectures that were determined to be
robust from the viewpoint of complex network science.

This study involved an examination of the network robustness of a Japanese busi-
ness relation network in 2011. In future, we plan to analyse the time series variation
of network robustness paying attention to local economic activities.
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