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Auto-correlation analysis and cross-correlation analysis are two commonly-used techniques
for providing insight into the dynamics of natural systems in presence of stationarity. How-
ever, many real-world data are nonstationary and exhibit long-range correlations [1, 2].
Recently the detrended cross-correlation analysis (DCC) was proposed to quantify cross-
correlations in presence of nonstationarity [3]. Here, we introduce a new cross-correlations
test QCC, to quantify presence of cross-correlations in data. Motivated by the Ljung-Box test
[4], we consider two i.i.d. time series, {yi} and {y′

i}, and calculate their cross-correlation

coefficients Xk ≡
∑N−k
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i , where E(Xk, Xk′) = 0 (k 6= k′), and
E(X2

k) = (N − k)/N2. The absence of cross-correlations between {yi} and {y′

i} implies

E(Xk) = 0 [5]. The Xk is normally distributed for N >> 1 [5]. Then Xk/
√

(N − k)/N2

approximately follows a Gaussian distribution with zero mean and unit variance, and the sum
of squares of these variables approximately follows the χ2(m) distribution with m degrees of
freedom. We propose the cross-correlation test which is approximately χ2(m) distributed,

QCC(m) ≡ N2
m

∑

k=1

X2
k

N − k
. (1)

As the LJB test, the test of Eq. (1) should be applied for the residuals of a given model.
However, the test of Eq. (1) can be also used to measure the strength of cross-correlations
in the original time series. If the test exceeds the critical value of the χ2(m) distribution,
then we say that the cross-correlations are significant. If for a broad range of m the test
of Eq. (1) exceeds the critical values of χ2(m) (QCC(m) > χ2

0.95(m)), we claim that there
are long-range cross-correlations. We propose that both the DCC function FDCC(n) ∝ nλCC

[3], where λCC is the detrended cross-correlation scaling exponent, and the cross-correlations
test of Eq. (1) need to be used in order to confirm existence of long-range cross-correlations.
In order to investigate the applicability of the proposed test above, we propose the two-
component ARFIMA model (based on ARFIMA process [6]), yielding two long-range auto-
correlated and long-range cross-correlated time series:
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Here, ηt and η′

t are two i.i.d Gaussian variables with zero mean and unit variance, and
0.5 < W < 1 is a free parameter controlling the strength of power-law cross-correlations.
aj(ρk) ≡

Γ(j−ρm)
Γ(−ρm)Γ(1+j)

are statistical weights, where 0 < ρ < 0.5.



Often it is unclear to what degree the time series generated by a stochastic process exhibits
linear and nonlinear correlations. Linear (nonlinear) auto-correlations are defined as those
correlations which are not destroyed (are destroyed) by a Fourier phase-randomization of
the original time series [7]. In Fig. 1 we show the test (filled symbols) for the pairs of time
series {yi} and {y′

i} of Eqs. (2)-(3) together with the critical values of χ2(m) for different m
values. We also show the test after (open symbols) performing Fourier phase-randomization,
for which case the cross-correlations are reduced compared to the case before Fourier phase-
randomization. Thus, while Fourier phase-randomization procedure preserves linear auto-
correlations [7], the same method substantially reduces the linear cross-correlations.
Next we investigate how the cross-correlation exponent λCC is estimated and how it relates to
the DFA exponents α [8] calculated for each of two cross-correlated time series of Eqs. (2)-(3).
In Figs. 2(a)-2(b), we show the DFA plots for each time series {yi} and {y′

i} and ρ1 = 0.4
and ρ2 = 0.1, where W = 0.95 [Fig. 2(a)] and W = 0.5 [Fig. 2(b)]. We show that {yi}
and {y′

i} are power-law auto-correlated and cross-correlated. For the y′

i, the DFA exponent
virtually does not change with W—α ≈ 0.6 = 0.5 + ρ2. In contrast, for the yi, the DFA α
exponent gradually decreases from α ≈ 0.9 = 0.5 + ρ1 (when W = 1, not shown) toward
α ≈ 0.6 (when W = 0.5) corresponding to the y′

i process.
We show in Figs. 2(a)-2(b) that, by varying the parameter W , λCC follows the DFA α
corresponding to the yi. By decreasing the value of W from W = 1 to W = 0.5, λCC

gradually decreases toward α ≈ 0.6. Generally, for different time series of the process of
Eqs. (2)-(3), where ρ1 > ρ2, we find that λCC is closer to the α exponent of the yi process.
We also study the effect of periodic trends on systems with long-range auto-correlations
and with long-range cross-correlations. We find that periodic trends severely affect the
quantitative analysis of long-range cross-correlations, leading to crossovers and other spurious
deviations from power laws. We find that both local and global detrending approaches
together with phase-randomization should be applied to properly uncover long-range auto-
correlations and cross-correlations in the random part of the underlying stochastic process.
Precisely, one needs first to detrend sinusoidal trends in the time series globally. Then one
needs to accomplish both the cross-correlation test and the DCC method. Finally we employ
our methods on real-world financial data.
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Figure 1: Effect of Fourier phase-randomization on QCC(m) of Eq. (1) for different m. For
each ρ, the process generates {yi} and {y′

i}, where W = 0.5. For each ρ, we phase-randomize
{y′

i}, and obtain series {ỹ′

i}. For each ({yi}, {ỹ
′

i}), we calculate the QCC(m) test. After
a phase-randomization procedure (open symbols), the cross-correlations are substantially
reduced.
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Figure 2: Detrended fluctuation analysis (DFA) and detrended cross-correlations analysis
(DCC) functions FDFA(n) and FDCC(n), respectively, versus scale n. We generate the time
series {yi} and {y′

i} of Eqs. (2)-(3) with ρ1 = 0.4 and ρ2 = 0.1, respectively. We show the
two DFA functions, FDFA(n) ∝ nα, and the DCC function, FDCC(n) ∝ nλCC , for coupling
(a) W = 0.95 and (b) for W = 0.5. Generally, by varying W , λCC becomes closer to α
corresponding to yi, but eventually the α value corresponding to yi tends to the α value
corresponding to y′

i.


