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A random matrix is a matrix whose elements are random variables, or equivalently, a matrix-
valued random variable. The history of random matrices can be traced back to multivariate
statistics and mathematical physics in early-mid 20th-century, and a significant amount of
knowledge has been accumulated since then. In recent years several new applications of
random matrices in the field of informatics have emerged. They include statistical learning,
data science, mathematical finance [1], and wireless communication [2], to mention a few. In
these research fields, matrices of the sample-covariance form A = ΞT Ξ, where Ξ is a rectan-
gular random matrix, play important roles, so that understanding properties of eigenvalue
distributions of such matrices is useful.

Although the eigenvalue distribution of a random matrix is itself a random quantity, in
many canonical cases it becomes deterministic in the limit of infinite dimensionality. This
property, called the self-averaging property, allows us to analytically treat limiting eigenvalue
distributions in the infinite-dimensionality limit.

A classic result regarding limiting eigenvalue distributions of matrices of the form A = ΞT Ξ
is that by Marc̆enko and Pastur [3]. Let Ξ be a p × N random matrix with independent
and identically-distributed (i.i.d.) elements ξμi, μ = 1, . . . , p, i = 1, . . . , N . Assume that
N1/2ξμi is zero-mean, unit-variance, and finite higher-order moments. Then the limiting
eigenvalue distribution ρΞT Ξ(λ) of the N × N random matrix ΞT Ξ in the limit N, p → ∞
while α = p/N kept finite is given by the so-called Marc̆enko-Pastur law
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χα(λ) =
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1 (λ ∈ [(1 −√
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is the indicator function of the interval [(1−√
α)2, (1 +

√
α)2]. The Marc̆enko-Pastur law is

universal in the sense that it holds independent of details of the distribution of ξμi.

Ways out of the universality of the Marc̆enko-Pastor law are to consider distributions of ξμi

with fat tails, i.e., those which do not have higher-order moments, and to consider sparse
random matrices. Motivated by problems in wideband wireless communication, we study
the limiting eigenvalue distribution of A = ΞT Ξ when Ξ is a sparse random matrix. Several
random matrix ensembles are considered: The basic ones are defined by a rectangular random
matrix Ξ with i.i.d. elements, each of which follows

p(ξ) =
(
1 − r

N

)
δ(ξ) +

r

N
π(ξ),
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(a) Poisson-weight ensembles with r = 12.
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(b) Fixed-weight ensembles
with row weight K = 12.

Figure 1: Limiting eigenvalue distributions of A = ΞT Ξ with α = 0.3. Nonzero elements take
the values ±1 with equal probabilities (Binary), or follow the standard Gaussian distribution
(Gaussian). Histograms obtained numerically with N = 6000 (solid) and analytical results
obtained via an approximation theory [4] (dashed) are shown.

where r is a parameter which corresponds to the average number of nonzero elements of
Ξ per row, and where π(ξ) is the distribution of the nonzero elements. Row and column
weights (numbers of nonzero elements per row/column) are Poisson distributed in the basic
ensembles in the infinite-dimensionality limit. We further consider ensembles which are
defined by constraining the basic ones with row/column weight distributions. An example
is a fixed-weight ensemble, in which row and column weights of Ξ are constrained to be
prescribed constants.

Our basic finding is that the limiting eigenvalue distributions depend on the distribution
π(ξ) of nonzero elements, as well as the weight distributions, as demonstrated in Fig. 1. The
figure also shows comparison between numerically obtained histograms and results obtained
via an approximate analytical theory [4]. It can be observed that, even though there are
notable discrepancies between them around the peaks and the tails, the analytical theory
predicts the numerical results reasonably well.
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[2] A. Tulino and S. Verdú, Random Matrix Theory and Wireless Communications, Founda-
tions and Trends in Communications and Information Theory, now Publishers, 2004.
[3] V. A. Marc̆enko and L. A. Pastur, “Distribution of eigenvalues for some sets of ran-
dom matrices,” Matematicheskii Sbornik, vol. 72, pp. 507–536, 1967; English translation,
Mathematics of the USSR-Sbornik, vol. 1, pp. 457–483, 1967.
[4] T. Nagao and T. Tanaka, “Spectral density of sparse sample covariance matrices,” Journal
of Physics A: Mathematical and General, vol. 40, pp. 4973–4987, 2007.


