Priority queues with scale-free arrivals of incoming tasks
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The interevent time distribution of human activities in many situations follows a power law
with exponent 1 or 3/2. This fact can be explained by a queueing model operating under
priority-based protocols [1,2]. In the priority queue model, each incoming task is assigned a
priority value, and the task with the highest priority is executed first. The distribution of the
interevent time corresponds to the waiting-time distribution of tasks in the queue [1,2]. The
power-law behavior with exponent 1 or 3/2 emerges when the queue length is finite or infinite,
respectively. Previous studies focused on the case in which incoming tasks are delivered to
the queue independently of each other. Then, the number of incoming tasks per unit time
follows the Poisson distribution. However, the number of emails received by a single user
per unit time sometimes follows a power-law distribution [3]. In this presentation, we report
the analytical solution of the queue-length distribution and the waiting-time distribution for
this case [3], using the generation function formalism (e.g. [4]).

Our discrete-time model is described as follows. In each time step, the task with the highest
priority in a queue is executed with probability p. Simultaneously, n tasks arrive to the
queue, where n is distributed according to a power law A, o An™7 (n > 0), \g = 1 — A,
where 0 < A < 1. Each task is assigned a priority = uniformly distributed on [0,1] without
loss of generality. The queue length is unbounded. This model generalizes the model by
Grinstein and Linsker [5,6], which corresponds to A\g =1 — A, Ay = A, and A\, =0 for n > 2
in our model.

Our results are summarized as follows. Given u > (n)\(1 — z), where (n), is the average
number of incoming tasks per unit time, the steady state for the queue-length distribution
exists for v > 2. Then we obtain

Qz(m) ~ — (m — 00), (1)
where Qw(m) is the probability that the queue has m tasks whose priorities are larger than
x in the steady state. Particularly, the steady state exists regardless of the value of x when
ft > (n)x. The mean queue length denoted by (m(z))gs, which exists only when v > 3 (see

Eq. (1)), is equal to
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2(p = (n)a(1 — x))
The interevent time distribution follows a power law Py (7) ~ 77% with « given as follows.
When (n)y < g, « = —1for v > 2. When (n)y = u, « = (2y —3)/(y—1) for 2 < v < 3,
and o = 3/2 for v > 3. When (n), > pu, the results for (n), = p apply, but only the tasks
with priority x > ((n)x — u)/{(n), are executed.
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