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Abstract

We discuss social inequalities in labor markets for university graduates in Japan by using the Gini and k-
indices. Feature vectors which specify the abilities of candidates (students) are built-into the probabilistic
labor market model [1]. Here we systematically examine what kind of selection processes (strategies) by com-
panies according to the weighted feature vector of each candidate could induce what type of large inequalities
in the number of informal acceptances leading to the large mismatch between students and companies.
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Inequalities are unavoidable phenomena in any compet-
itive society and it sometimes gives us a strong motiva-
tion to work harder. However, at the same time, inequal-
ity might cause some sort of ‘instabilities’ in our socio-
economic systems. For instance, such social inequalities
might emerge even in simultaneous recruiting of new grad-
uates in Japan, in particular, in the number of informal
acceptances resulting in quite large the ‘mismatch’. In our
previous modeling of labor markets [1], we simply assumed
that each company selects the students ‘randomly’ up to
their quota. However, it is obviously far from reality.

In this paper, we attempt to modify the model by taking
into account realistic selection procedures by companies.
Here we assume that each company k (= 1, 2, · · · ,K) pos-
sesses their own valuation basis, say, a superposition of M
orthogonal bases e1 ≡ (1, 0 · · · , 0), · · · , (0, · · · , 0, 1) ≡ eM

as Y (k) = y
(k)
1 e1 + · · ·+ y

(k)
M eM = (y(k)

1 , · · · , y(k)
M ). On the

other hand, each student i (= 1, 2, · · · , N) possesses their
own ‘feature vector’ which is also given by a superposition
of bases as X(i) = x

(i)
1 e1 + · · · + x

(i)
M eM = (x(i)

1 , · · · , y(i)
M ).

Therefore, the total score of student i made by the com-
pany k is now given by a projection to the basis Y (k) as

s(i,k) = X(i) · Y (k). (1)

If the student i is scored as the top v∗
k-ranking, where v∗

k

stands for the quota of the company k, among all candi-
dates who submitted their application letters to the com-
pany k, the student i might obtain the informal accep-
tance. In this sense, the selection procedure is ‘unified’
when all companies choose the ‘weights’ as y

(k)
1 = 1, y

(k)
2 =

· · · = y
(k)
M = 0. In such a specific case, a few top scored

students in terms of the basis x
(i)
1 might ‘monopolize’ the

informal acceptances, and as the result, the mismatch be-
tween students and companies are considerably enhanced.

Recently, a lot of companies are trying to get talented
persons from various aspects to accelerate the ‘diversity’ in
their companies. Hence, a unified selection basis does not
catch the reality and here we assume that (y(k)

l , x
(i)
l ), l =

1, · · · ,M are identically independent distributed variables
in terms of a normal y

(k)
l ∼ N(0, σ) and a lognormal x

(i)
l ∼

(1/
√

2πτ2x
(i)
l ) e−(log x

(i)
l

−µ)2/2τ2
for N, K � 1.

For these artificial settings of ‘diversities’, we carry out
agent-based simulations using our probabilistic labor mar-
kets [1] and evaluate the social inequalities by means of

inequality measures, the Gini and k indices [2]. The k in-
dex which was recently introduced denotes the situation in
which k percentage of students shares totally (1− k) per-
centage of the informal acceptances in the labor market.
The Gini index g, which is given by an area surrounded
by what we call Lorentz curve: (X(r), Y (r)), X(r) ≡∫ r

0
P (m)dm, Y (r) ≡

∫ r

0
mP (m)dm/

∫ ∞
0

mP (m)dm for the
distribution of number of acceptance P (m) and the perfect
equality line Y = X, is quantified by the k index as

2k − 1 ≤ g ≤ 2k(2− k)− 1− (1− k)2(ξ(k) + ξ(k)−1) (2)

with ξ(k) ≡ X−1(k)/Y0, Y (0) ≡
∫ ∞
0

mP (m)dm. Namely,
the Gini index g is bounded from the both above and below
by means of the k index (see also [2] for the details).

We can improve the bounds so as to make them much
titer ones recursively as glower(n), gupper(n), n = 0, 1, 2, · · ·,
where glower(0), gupper(0) correspond to the bounds in (2).
Several preliminary results are shown in Figure 1. From
this figure, we clearly find that glower(n), gupper(n) con-
verge to the exact value as the step n increases. The de-
tails of the analysis would be reported at the conference.
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Figure1: Gini index g as a function of the degree of ranking
preference γ of students in the model [1]. The inset shows
glower(n), gupper(n), n = 0, 1, 2. Here we set N = 1000, K =
50, a = 5, α = 1.62, β = 1 for the definitions in the model [1].
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