Self-organized criticality models with ever expressed genes for gene regulatory networks

Chen-Ping ZHU¹, Chuan-Yang YIN², Jing ZHAO³, Hui-Jie YANG⁴, and Chin-Kun HU⁵

¹College of Science, Nanjing University of Aeronautics and Astronautics, Jiangning, Nanjing, 210016 China

²Institute of Information and System Science, Nanjing University of Information Science and Technology, Pancheng, Nanjing, 210044 China

³Department of Mathematics, Logistical Engineering University, Hougong, Chongqing, 400016 China ⁴Business School, University of Shanghai for Science and Technology, Yangpu, Shanghai 200093 China ⁵Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

E-mail: ¹oldpigman1234@126.com

Abstract

Based on Bornholdt-Roehlf model [1, 2] and three experimental ingredients [3, 4, 5, 6, 7, 8, 9, 10]: the fraction r of ever expressed genes(EEG), hierarchical levels of gene regulatory networks (GRN) and co-regulation from both EEG and local genes, we propose a more realistic model of GRN. Large scale simulations on N nodes with different initial degrees or configurations reveal the convergence of the model with both average degrees $\langle k \rangle$ and degree distributions p(k) which cover empirical data not reachable by the model of [1, 2]. Moreover, $\langle k(r) \rangle$ increases with the observable r, which outperforms the dropping of $\langle k(N) \rangle$ from SOC, and r determines the universality of it by variable power-law exponents of $\langle k(N) \rangle$ and critical degrees k_c .

Keyword: self-organized criticality, gene regulatory network, ever expressed genes

References

- S. Bornholdt, and T. Roehlf, Phys. Rev. Lett. 84, 6114 (2000).
- [2] T. Roehlf, Europhys. Lett. 84, 10004 (2008).
- [3] T. I. Lee, et al., Science, 298, 799 (2002).
- [4] A. H. Y. Tong, et al., Science, 303, 808 (2004).
- [5] S. S. Ma, Q. Q. Gong, H. J. Bohnert, Genome Res., 17, 1614 (2007).
- [6] H. Ma, J. Buer, and A. Zeng, BMC Bioinf. 5, 199 (2004).
- [7] N. M. Luscombe et al., Nature 431, 308 (2004).
- [8] A. Martinez-Antonio, Net. Bio. 1, 21 (2011).
- [9] G. Balazsi, A. Barabasi, and Z. N. Oltvai, Proc. Natl. Acad. Sci.102, 7841 (2005).
- [10] M. B. Gerstein et al., Nature, 489, 91 (2012).